

Key Statistical Concepts Summary Sheet

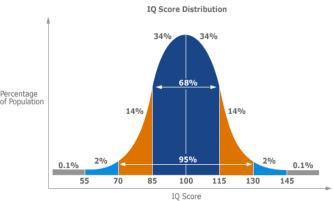
KEY TERMS

Deviation	The distance between the mean and a particular data point in a given distribution.
Mean	The average score within a distribution.
Median	The center score in a distribution.
Mode	The most frequent score in a distribution.
Bell curve	Normal Distribution is shaped like a bell.
Central Tendency	Indicate the centre of a distribution.
Confidence Level	The specific probability of obtaining some result from a sample below which the relationship will be regarded as statistically significant.
Correlation	Measures the degree of relationship between pairs of interval variables in a sample. The range of correlation is from -1.00 to zero to +1.00.
Causality	The relation between cause and effect.
ANOVA	(Analysis of Variance) A method of statistical analysis broadly applicable to a number of research designs, used to determine differences among the means of two or more groups on a variable.
Sample	The population researched in a particular study. Usually, attempts are made to select a "sample population" that is considered representative of groups of people to whom results will be generalised.
Population	The target group under investigation, Samples are drawn from populations.
Standard Deviation	A term used in statistical analysis. A measure of variation that indicates the typical distance between the scores of a distribution and the mean; it is determined by taking the square root of the average of the squared deviations in a given distribution.

Key Formulas										
Statistic	Formula	Used For								
Sample mean (average)	$\overline{x} = \frac{\sum x}{n}$	Measure of centre; affected by outliers								
Median	<i>n</i> odd: middle value of ordered data <i>n</i> even: average of the two middle values	Measure of centre; not affected by outliners								
Sample standard deviation	$s = \sqrt{\frac{\sum \left(x - \overline{x}\right)^2}{n - 1}}$	Measure of variation; "average" distance from the mean								
Correlation coefficient	$r = \frac{1}{n-1} \sum \frac{(x-\overline{x})(y-\overline{y})}{s_x s_y}$	Straight and direction of linear relationship between X and Y								

NOTATIONS USED

In general, capital letters refer to population attributes (i.e., parameters) and lower-case letters refer to sample attributes (i.e., statistics). For example:


Р	refers to a population proportion	р	to a sample proportion
X	refers to a set of population elements	x	to a set of sample elements
N	refers to population size	n	to sample size

Bell curve

MAIN CONCEPTS

- Dark blue is less than one standard deviation from the mean. For the normal distribution, this accounts for 68.27% of the set, while two standard deviations from the mean (orange and dark blue) account for 95.45%.
- Three standard deviations (light blue, orange, and dark blue) account for 99.73%.
- **68-95-99.7 rule** or **three-sigma rule**, or **empirical rule** states that for a normal distribution, nearly all values lie within 3 standard deviations of the mean.

STATISTICAL SYMBOLS

 $\boldsymbol{\mu}$ refers to a population mean; and \boldsymbol{x} , to a sample mean.

 σ refers to the standard deviation of a population; and s, to the standard deviation of a sample.

Hypothesis Testing

....

H₀ refers to a null hypothesis.

 H_1 or H_a refers to an alternative hypothesis.

 α refers to the significance level.

B refers to the probability of committing a Type II error.

TYPICAL QUESTION

A sample of the variable x assumes the following values: 9 11 13 3 7 2 8 9 6 10															
Compute:	(a) n	(b) ² x	(c) \overline{x}	(d) s	6		(e)	S ²		(f)	medi	an &	mode	(h) range	CV

(a) n = 10
(b)
$$\sum x = 78$$

(c) $\overline{x} = \frac{\sum x}{n} = \frac{78}{10} = 7.8$
(d) $s = \sqrt{\frac{\sum x^2 - n\overline{x}^2}{n-1}} = \sqrt{\frac{714 - 608.4}{9}} = \sqrt{11.73} = 3.43$
(e) $s^2 = 11.73$
(f) P(med) = $\frac{n+1}{2}$ th score = $\frac{10+1}{2}$ th score = 5.5th score
med = 5.5th score = $\frac{5thscore + 6thscore}{2} = \frac{8+9}{2} = 8.5$
(g) mode = 9
(h) range = highest value - lowest value = 13 - 2 = 11
(j) coefficient of variation (CV) = $\frac{s}{x} = \frac{3.43}{7.8} = 0.44$

STUDENT LEARNING CENTRE REGISTRY BUILDING ANNEXE

TEL: 61-8-8201 2518 E-MAIL: <u>slc@flinders.edu.au</u>

INTERNET: http://www.flinders.edu.au/SLC POSTAL: PO Box 2100, Adelaide, SA 5001