

How do you work out the slope of a straight line (m)?

Slope is the vertical change compared to horizontal change.
For example: To find the slope of a line that passes through the points $(4,10)$ and $(6,20)$ let $\left(x_{1}, y_{1}\right)=(4,10)$ and $\left(x_{2}, y_{2}\right)=(6,20)$.

$$
m=\frac{y^{2}-y^{1}}{x^{2}-x^{1}}=\frac{20-10}{6-4}=\frac{10}{2}=5
$$

So the slope of the line is: $\boldsymbol{m}=\mathbf{5}$.

How do you work out the equation of a straight line?

For example: What is the equation of the line going through $(2.5,20)$ and $(5,30)$?
Step 1: Work out the slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{30-20}{5-2.5}=\frac{10}{2.5}=4$
Step 2: Work out the y-intercept, by substituting a coordinate back in the equation.
From step 1 we know $m=4$ so using $y=m x+c$ formula, the equation becomes $y=4 x+c$. We know that $(5,30)$ is a point of the line.

So, we can substitute $x=5$ and $y=30$ into $y=4 x+c$ to work out c.
(However, you can substitute either coordinate)
Step 3: Write down the equation.

$$
\begin{aligned}
y & =4 x+c \\
30 & =4 \times 5+c \\
30 & =20+c \\
30-20 & =20+c-20 \\
10 & =c
\end{aligned}
$$

We have found that $m=4$ and $c=10$, so the question of the line is: $\boldsymbol{y}=\mathbf{4 x}+\mathbf{1 0}$

Can we figure it out just looking at the graph? Yes we can...

What is the equation of the straight line shown in the diagram below?

Step 1: Find the slope or gradient (these are two names for the same thing):

Slope $=\frac{2}{4}=\frac{1}{2}$ so $m=1 / 2$
Step 2: Find the y-intercept.
y-intercept $=-2$. So $c=-2$
The general equation of a straight line is $y=m x+c$
So the given line has equation $y=(1 / 2) x-2$

The general form for the slopelintercept equation of a straight line is given by: $y=m x+c$

Where, m is the slope of the line c is they y-intercept of the line

The general form for the slope/point form of an equation is given by;

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Where, m is the slope of the line
x_{1} is the x-coordinate of a point $\left(x_{1}, y_{1}\right)$
y_{1} is the y-coordinate of a point $\left(x_{1}, y_{1}\right)$
There is another way you can do it: $y-y_{1}=m\left(x-x_{1}\right)$
What is the equation of the straight line that passes through the points $(-2,5)$ and $(3,-5)$?

Step 1: First find the slope as usual

$$
m=\frac{y_{y} \text { change }}{x_{\text {_ }} \text { change }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \frac{-5-5}{3-(-2)}=\frac{10}{5}=-2
$$

Step 2: Substitute a coordinate into the equation. Let's choose $(-2,5)$ for x_{1} and y_{1}.

$$
\begin{aligned}
\boldsymbol{y}-\boldsymbol{y}_{\mathbf{1}} & =\boldsymbol{m}\left(\boldsymbol{x}-\boldsymbol{x}_{\mathbf{1}}\right) \\
y-5 & =-2(x-(-2)) \\
y-5 & =-2(x+2) \\
y-5 & =-2 x-4 \\
y & =-2 x+1
\end{aligned}
$$

Try this one: What is the equation of the straight line that passes through the points $(-5,2)$ and $(7,-1)$?

Check your answer: $y=-\frac{1}{4} x+\frac{3}{4}$

