To solve an equation, we need to get the x by itself - when it's by itself, we get the answer of what x is! In order to get the x by itself, we need to rearrange the numbers and symbols in the equation while still keeping the equation accurate.

Think of the equals sign in the equation as a balance scale. We can change the positions of items on the scales, and take items on or off - we can change the position of numbers and symbols in the equation, and remove numbers or add them on - as long as we keep the scales balanced. We keep the scales balanced by always doing the same thing to both sides of the equation.

$$
3=3
$$

$$
2+3=2+3
$$

Remember also that the sign of a variable or constant is what is in front of it; sometimes it's an "invisible +" if it's at the beginning.

To solve an equation, rearrange so that all variable parts (anything with x in) are on one side of the equal sign, and all number parts (parts with just numbers, not x 's) are on the other side. To do this rearranging, you need to identify what operations are being used (Add, Subtract, Multiply, Divide) and "Undo" operations by using opposite operations. Remember: Whatever you do to one side, you must do to the other side to keep equation balanced.

Example 1: Solve $4 \mathrm{x}-5=15$

> Our answer makes LHS = RHS in this equation so our answer is correct.

$4 x-5$ +5	$=15$	- Add 5 to both sides because this will remove the minus 5 from the LHS and leave just the $4 x$ (add and subtract are opposite operations).
$4 x$	$=20$	- Simplify - notice there's now only x parts on LHS and number parts on RHS.
$\frac{4 x}{4}$	$=\frac{20}{4}$	- Divide both sides by 4 because 4 is multiplied by x, so the opposite operation division by 4 - will remove the 4 and leave only x.
\boldsymbol{x}	$=5$	- Simplify - notice we now have the x by itself and our answer is $x=5$.

Let's check our answer in the original problem by replacing x with 5: $4 \times 5-5=20-5=15$.

The most important rule to remember is to do the same thing to both sides of the equation. This preserves equality.

Example 2: Solve $x / 3+4=9$

Our answer makes LHS = RHS in this equation so our answer is correct.

$$
\begin{array}{rll}
\frac{x}{3}+4 & =9 & \text { - } \begin{array}{l}
\text { Subtract } 4 \text { from both sides because add and subtract are opposite operations, so } \\
\text { subtracting } 4 \text { removes plus } 4 \text { from LHS and leaves just } \frac{x}{3} .
\end{array} \\
-4 & { }^{-4} & \text { - Simplify - notice there's now only } x \text { parts on LHS and number parts on RHS. } \\
\frac{x}{3} & =5 & \begin{array}{l}
\text { - Multiply by } 3 \text { on both sides because } x \text { is divided by } 3 \text {, so the opposite operation - } \\
\text { multiplication by } 3-\text { will remove the } 3 \text { and leave only } x .
\end{array} \\
\frac{x}{3} \times 3 & =5 \times 3 & =15
\end{array} \begin{aligned}
& \text { - Simplify - notice we now have the } x \text { by itself and our answer is } x=15 .
\end{aligned}
$$

Let's check our answer in the original problem by replacing x with 15 : $\frac{15}{3}+4=5+4=9$.

Example 3: Solve $\frac{5+3 x}{2}+5=3 x$ Our answer makes LHS = RHS in this equation so our answer is correct.

- Subtract 5 from both sides because add and subtract are opposite operations. So subtracting 5 removes plus 5 from LHS and leaves just $\frac{5+3 x}{2}$
- Multiply by 2 on both sides because $5+3 x$ is divided by 2 , so the opposite operation - multiplication by 2 - will remove the 2 and leave only $5+3 x$. NOTE: $\frac{2}{1}$ is the same as 2 , since 2 divided by 1 equals 2 .

$5+3 x$	$=6 x-10$
$-3 x$	
5	$=3 x$
+10	$3 x-10$
15	$=3 x$
$\frac{15}{3}$	$=\frac{3 x}{3}$
5	$=x$

- Simplify by multiplying LHS and expanding brackets RHS. Then subtract $3 x$ from both sides since add and subtract are opposite operations, so subtracting $3 x$ removes $+3 x$ from LHS.
- Add 10 to both sides, removing -10 from RHS and rearranging equation with only x parts on LHS and number parts on RHS.
$5=x \quad$ - Our answer is: $x=5$

Let's check our answer in the original problem by replacing x with 5: LHS: $\frac{5+3 \times 5}{2}+5=\frac{20}{2}+5=15$, RHS: $3 \times 5=15$ Note both sides equal so answer is right.

Example 4: Solve $10 y-(4 y+8)=-20$

$\begin{array}{r} 10 y-(4 y+8) \\ 10 y+(-1)(4 y+8) \end{array}$	$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{aligned} & -20 \\ & -20 \end{aligned}$	- Distribute -1 on the left side.
$\begin{array}{r} 10 y+(-1)(4 y)+(-1)(8) \\ 10 y-4 y-8 \end{array}$	$\begin{aligned} & = \\ & = \end{aligned}$	$\begin{aligned} & -20 \\ & -20 \end{aligned}$	- Simplify.
$6 y-8$	$=$	$\begin{aligned} & -20 \\ & +8 \end{aligned}$	- Add 8 to both sides to get $6 y$ by itself.
$\begin{aligned} & 6 y \\ & \frac{6 y}{6} \end{aligned}$	$=$ $=$	$\begin{aligned} & -12 \\ & -12 \\ & \hline 6 \end{aligned}$	- Divide both sides by 6 to get y by itself.
y	$=$	-2	- ANSWER

Let's check our answer in the original problem by replacing y with -2 :
LHS: $10 \times(-2)-(4 \times(-2)+8)=-20-(-8+8)=-20-0=-20$

Making a variable the subject of an equation

Sometimes a question asks you to make a variable the subject of an equation. This means you need to get a variable by itself on one side of the equals sign, so it's just like solving an equation. For example, if $Q=110-$ $4 P$, and you are asked to make P the subject of the equation, the way to do this is just to solve the equation i.e. to get P by itself on one side of the equals sign.

Example 5: Make P the subject of $Q=110-4 P$

Q	$=$	$110-4 P$	- Subtract 110 from both sides to get $4 P$ by itself.
$Q-110$	$=$	$4 P$	
$\frac{Q-110}{4}$	$=$	$\frac{4 P}{4}$	- Divide both side by 4 to get P by itself.
$\frac{Q-110}{4}$	=	P	
$P=\frac{Q-110}{4}$	OR		- ANSWER

Practice Questions

Solve：
1． $2 x-5=17$

2． $3 y+7=25$

3． $5 n-2=38$

4．Rearrange this formula $\mathbf{A}=\mathbf{2} \mathbf{a}^{\mathbf{2}} \mathbf{+} \mathbf{4 a b}$ so that b is the subject of the formula．

5． $\mathbf{s}=\mathbf{u t}+\frac{1}{2} \mathbf{a t}^{2}$ is a formula used in Physics to calculate distance．Make＂a＂the subject of the formula．

$$
\begin{aligned}
& \frac{z^{7}}{(7 n-s) Z}=0 \quad \text { ұәб әм pu甘 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { :乙 Kq səp!s પloq Kıd!!|nW }
\end{aligned}
$$

$$
\begin{aligned}
& \text { :sәр!s dems }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{D_{\square}}{z^{p} \mathcal{Z}-V}=q \\
& \frac{p_{\mp}}{z^{n} \tau-V}=\frac{p_{\mp}}{q^{p_{\mp}}} \\
& \text { :eャ Кq səpıs цłоq әр!м!p ‘моN } \\
& { }_{\text {z }}^{2} \mathrm{ZZ}-\forall=q \mathrm{q}_{\mathrm{t}} \\
& \text { :sәp!s dems } \\
& \text { qet }={ }_{2} \mathrm{EZ} \text { - } \forall
\end{aligned}
$$

$$
\begin{aligned}
& \text { :七 uo!̣sənठ } \\
& 8=u \\
& \text { : } \begin{array}{c}
\text { uo!!sən } \\
\hline
\end{array} \\
& 9=\kappa \\
& \text { :z uoḷsənర } \\
& \tau \tau=x
\end{aligned}
$$

Student Learning Centre

Registry building annexe

TEL：61－8－8201 2518
E－mAIL：slc＠flinders．edu．au

